

1

Initial-value problems

- An initial-value problem (IVP) is can be:
- The first derivative described in terms of the independent variable and the function

$$
\begin{array}{ll}
y^{(1)}(t)=f(t, y(t)) & y^{(1)}(t)=t y(t)+t-1 \\
y\left(t_{0}\right)=y_{0} & y(0)=1
\end{array}
$$

- The $n^{\text {th }}$ derivative described in terms of the independent variable, lower derivatives and the function

$$
\begin{array}{rlrl}
y^{(n)}(t) & =f\left(t, y(t), y^{(1)}(t), \ldots, y^{(n-1)}(t)\right) \\
y\left(t_{0}\right) & =y_{0} & y^{(3)}(t) & =y^{(2)}(t)+2 y^{(1)}(t) y(t)+\sin (t) \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} & y(1) & =2 \\
& \vdots & y^{(1)}(1) & =3 \\
y^{(n-1)}\left(t_{0}\right) & =y_{0}^{(n-1)} & y^{(2)}(1) & =4
\end{array}
$$

Initial-value problems

- A system of coupled IVPs, for example

$$
\begin{aligned}
y_{1}^{(1)}(t) & =0.02 y_{1}(t)-0.1 y_{1}(t) y_{2}(t) \\
y_{2}^{(1)}(t) & =-0.04 y_{2}(t)+0.02 y_{1}(t) y_{2}(t) \\
y_{1}(0) & =5233 \\
y_{2}(0) & =323
\end{aligned}
$$

Solutions to IVPS

- Recall your approach in calculus:

$$
\begin{aligned}
y^{(1)}(t) & =-y(t)-1 \\
y(0) & =1
\end{aligned}
$$

- In calculus, you find a single exact solution:

$$
y(t)=2 e^{-t}-1
$$

- What if you cannot find an exact solution?

Approximate solutions to IVPs

- What do we have?

$$
\begin{aligned}
y^{(1)}(t) & =-t y(t)-1 \\
y(0) & =1
\end{aligned}
$$

- At time $t=0$, the value is 1
- The first equation says:
- If $t=0$ and $y(0)=1$, then $y^{(1)}(0)=-0 \cdot 1-1=-1$
- Taylor series now say that:

$$
\begin{aligned}
y(0+h) & \approx y(0)+y^{(1)}(0) h \\
& =1+(-1) h
\end{aligned}
$$

- Thus, $y(0.1) \approx 0.9$
- If $t=0.1$ and $y(0.1)=0.9$, then $y^{(1)}(0)=-0.1 \cdot 0.9-1=-1.09$
- Thus $y(0.2)=y(0.1)+y^{(1)}(0.1)=0.9+(-1.09) 0.1=0.791$

Approximate solutions to IVPs

- In this course,
we will approximate the solution at specific points:

$$
\left(t_{0}, y\left(t_{0}\right)\right),\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right),\left(t_{3}, y_{3}\right), \ldots
$$

- Thus, $y\left(t_{k}\right) \approx y_{k}$

This is the initial condition

7

Approximating at intermediate values of t

- Suppose we want to approximate the solution at some point

$$
t_{k-1}<t<t_{k}
$$

- Do we find the interpolating linear polynomial between

$$
\left(t_{k-1}, y_{k-1}\right) \text { and }\left(t_{k}, y_{k}\right) ?
$$

- Do we find the interpolating cubic polynomial between

$$
\left(t_{k-2}, y_{k-2}\right),\left(t_{k-1}, y_{k-1}\right),\left(t_{k}, y_{k}\right) \text { and }\left(t_{k+1}, y_{k+1}\right) ?
$$

Interpolating cubic polynomials

- Let's implement this function
- We assume $t_{k}-t_{k-1}=h$

$$
\left(\begin{array}{rrrr}
-1 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
8 & 4 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{k-2} \\
y_{k-1} \\
y_{k} \\
y_{k+1}
\end{array}\right)
$$

double ivp_interp_4pt(double t, double ts[4],
double ys[4]) \{
double delta\{ (t - ts[1])/(ts[2] - ts[1]) \};

$$
\text { assert }((0.0<=\text { delta }) \& \&(\operatorname{delta}<=1.0)) \text {; }
$$

return
(
(ys[3] - ys[0])/6.0 + (ys[1] - ys[2])/2.0
)*delta + ((ys[0] + ys[2])/2.0 - ys[1])
)*delta + (-ys[3]/6.0 + ys[2] - ys[1]/2.0 - ys[0]/3.0))*delta + ys[1];

Approximating solutions to inital value problems

Splines

- Recall that $y^{(1)}(t)=f(t, y(t))$, so

$$
y^{(1)}\left(t_{k-1}\right)=f\left(t_{k-1}, y_{k-1}\right) \text { and } y^{(1)}\left(t_{k}\right)=f\left(t_{k}, y_{k}\right)
$$

- Can we find a cubic polynomial p that satisfies:

$$
\begin{aligned}
p\left(t_{k-1}\right) & =y_{k-1} \\
p^{(1)}\left(t_{k-1}\right) & =f\left(t_{k-1}, y_{k-1}\right) \\
p\left(t_{k}\right) & =y_{k} \\
p^{(1)}\left(t_{k}\right) & =f\left(t_{k}, y_{k}\right)
\end{aligned}
$$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{k-1} \\
h f\left(t_{k-1}, y_{k-1}\right) \\
y_{k} \\
h f\left(t_{k}, y_{k}\right)
\end{array}\right)
$$

Splines

- This is now fun:

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{k-1} \\
h f\left(t_{k-1}, y_{k-1}\right) \\
y_{k}-y_{k-1}-h f\left(t_{k-1}, y_{k-1}\right) \\
h\left(f\left(t_{k}, y_{k}\right)+f\left(t_{k-1}, y_{k-1}\right)\right)+2\left(y_{k-1}-y_{k}\right)
\end{array}\right)
$$

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a_{3} \\
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right)=\left(\begin{array}{c}
y_{k-1} \\
h f\left(t_{k-1}, y_{k-1}\right) \\
3\left(y_{k}-y_{k-1}\right)-h\left(2 f\left(t_{k-1}, y_{k-1}\right)+f\left(t_{k}, y_{k}\right)\right) \\
h\left(f\left(t_{k}, y_{k}\right)+f\left(t_{k-1}, y_{k-1}\right)\right)+2\left(y_{k-1}-y_{k}\right)
\end{array}\right)
$$

11

Approximating at intermediate values of t

- Which is better?
- We will take an IVP to which we know the solution and find:

1. The linear polynomial interpolating

$$
(0.20, y(0.20)),(0.25, y(0.25))
$$

2. The cubic polynomial interpolating
(0.15, $y(0.15)),(0.20, y(0.20)),(0.25, y(0.25)),(0.30, y(0.30))$
3. The cubic spline

$$
(0.20, y(0.20)),(0.25, y(0.25))
$$

- We will then evaluate the actual solution and these approximations at the point $t=0.2353243$

Approximating at intermediate values of t

- First, let's start the $1^{\text {st }}$-order IVP:

$$
\begin{aligned}
y^{(1)}(t) & =-y(t) \\
y(0) & =1
\end{aligned}
$$

Approximating solutions to initial-value problems

- Here, $y(0.2353243)=0.7903145090700692$

Linear interpolating polynomial: 0.7905207882879153
0.0002062

Cubic interpolating polynomial:
0.7903144140636057
0.00000009501

Cubic spline:
0.7903144140636057
0.000000008924

14

Approximating at intermediate values of t

- Next, let's consider :

$$
\begin{aligned}
& y^{(1)}(t)=(t-y(t)+1)(y(t)-t) \quad y(t)=t+\frac{1}{2}+\frac{1}{2} \sqrt{3} \tan \left(\frac{\pi-3 \sqrt{3} t}{6}\right) \\
& y(0)=1 \\
& - \text { Here, } y(0.2353243)=1.022125607413852
\end{aligned}
$$

Linear interpolating polynomial: 1.022252377336976 0.0001268

Cubic interpolating polynomial:
1.022125194141359
0.0000004133

Cubic spline:

15

Approximating at intermediate values of t

- Also, we can do this with any continuous and differentiable function:
- Given the sine function, here we see the error of:
- A cubic polynomial interpolating the values $0.2,0.4,0.6,0.8$
- A cubic spline matching the values and derivatives at 0.4 and 0.6
- The error of the spline is smaller by a factor of 10

Our approach

- We will begin by approximating the solution to a $1^{\text {st }}$-order IVP
- The techniques used here will trivially generalize to allow us to:
- A system of n coupled $1{ }^{\text {st- order IVPS }}$

- An $n^{\text {th }}$-order IVP

$$
\theta^{(2)}(t)=-\frac{g}{L} \sin (\theta(t))
$$

$$
i^{(2)}(t)+\frac{R}{L} i^{(1)}(t)+\frac{1}{C L} i(t)=\frac{1}{L} v^{(1)}(t)
$$

- A system of higher-order coupled IVPS

Looking ahead

- To approximate a solution to a $1^{\text {st. }}$-order IVP, we will look at:
- Euler's method
- Heun's method
- $4^{\text {th }}$-order Runge Kutta
- Adaptive Euler-Heun
- Dormand-Prince method
- Stiff ODEs and backward Euler
- We will then generalize these algorithms to approximate the solution to a system of $1^{\text {st-order coupled IVPS }}$
- We will use such an approach to approximate the solution to an $n^{\text {th }}$-order IVP
- We will then see it is trivial to approximate the solution to a system of higher-order IVPs

Summary

- Following this topic, you now
- Understand the various types of initial-value problems
- Are aware of the approach we will use
- Know about splines as opposed to interpolating polynomials
- Are aware that we will approximate solutions to:
- $1^{\text {st- }}$ order IVPs
- Systems of $1^{\text {st- }}$-order IVPS
- Higher-order IVPS
- Systems of higher-order IVPS

